

Hilton Virginia Beach Oceanfront Virginia Beach, Virginia

Sentara Vascular Specialists

2022 MID-ATLANTIC CONFERENCE

10th ANNUAL CURRENT CONCEPTS IN

VASCULAR THERAPIES

Bioabsorbable Stents

Christine Ou Sentara RMH

Overview

- Endovascular balloons vs stents
- History of bioabsorbable vascular stents (BVS)
- Benefits of BVS
- Various stent models
- Results of trials
- Future of BVS

Endovascular Balloons

- Percutaneous transluminal angioplasty (PTA)
- 'Plain old balloon angioplasty' POBA
- Used to widen a narrowed or obstructed artery or vein
- Minimally invasive

Stent with Balloon Angioplasty Build up of cholesterol partially blocking Stent with balloon inserted into partially blood flow through the artery. blocked artery. Balloon inflated to expand stent. Balloon removed from expanded stent.

Endovascular Balloons

- Cutting, scoring
- Intravascular lithotripsy (IVL)
- Drug coated balloon (DCB)antiproliferative drugs inhibits inflammatory process
- Limitations-recoil, dissections, stretch injuries, inflammatory changes

Endovascular Stents

- Insertion of a wire mesh stent into the artery
 - Metals such as stainless steel, nitinol, or metal alloy
- Self expanding
 - Pros-flexible, long lengths, radial force if oversized, crush resistant
 - Cons-low radial force, limited radiopacity

Endovascular Stents

- Balloon expanding
 - Pros-high radial force, radiopaque
 - Cons-short lengths, prone to crushing
- Drug eluting stents (DES)-antiproliferative drugs inhibits inflammatory process
- Limitations-in stent restenosis/thrombosis, stent fractures, prevent future treatments

Goals of BVS

- Occlusion of the artery can be open with implantation
- Maintain vessel patency during the first 6-9 months as vessel is healing
- 'Leave nothing behind' concept
- Limit acute and subacute stent thrombosis
- Prevent recoil
- After the stent is absorbed, it restores the normal vasomotion and endothelial function of the vessel
- Prolong dual antiplatelet therapy might not be necessary

Timeline of Bioabsorbable Stents

- First developed in 1990s
- First coronary BVS was used in 2000
- First peripheral sent was used in 2009
- Vascular BVS was FDA approved in 2016

Polymeric Stent

- Poly-L-lactic acid (PLLA)
- Polyglycolic acid (PGA)
- Poly (D,L lactide/glycolide) co polymer (PDLA)
- Polycaprolactone (PCL)
- Long chains that are hydrolysed, phagocytosed, and degraded to lactic acid, carbon dioxide, and water, and eliminated via the kreb cycle
- Degradation time between 6-24 months

Metallic Stents

- Magnesium alloy
 - Tubular, slotted, balloon expandable bare metal stents sculpted by laser from biodegradable magnesium alloy
 - rare earth elements with radio opaque markers at the ends
- Low elastic recoil
- Large cells with open mesh design idea for side branch access
- Degradation ranges from 60-90 days with overall integrity at 28 days

Combination Stents

- Tacrolimus eluting cobalt chromium polymer stents
 - Thin, flexible cobalt chromium alloy coated with PDLA polymer incorporating tacrolimus
 - Degradation of matrix at 9 months
 - Early endothelialization and reduction of neointimal thickness up to 90 days after implant
- Everolimus eluting stents
- Paclitaxel BVS

Igaki Tamai Stent

- Self expanding with PLLA with radio opaque markers at the ends
- Developed in the late 1990s
- First fully bioresorbable peripheral stent
- GAIA study
 - First informative series testing device in 30 femoropopliteal lesions with a mean length of 5.9 cm
 - Initial results showed technical success with comparable metal stents
 - IVUS showed complete absorption of stents
 - Binary restenosis rates were 39.3% and 67.9% at 6 and 12 months respectively
 - Histopathology from specimens retrieved by atherectomy showed mixed hyperplastic tissue and remnants of stent struts, inflammatory cells, and thrombus

Igaki Tamai Stent

REMEDY Stent

- Follow up to the Igaki-Tamai stent
- Received Conformité Européene mark in 2009 for treatment of SFA lesions in Europe
- Made of semicrystalline PLLA
- Radial strength and flexibility maintained for 6-9 months after implantation
- Fully bioabsorbed in 2-3 years
- Primary patency at 6 months was 68% but dropped to 58% at 12 months
 - 1 in 3 patients needed TLR after 1 year follow up
- CFA vs endarterectomy –BVS did worst compared to open surgery

Stanza Stent

- Self expanding PDLA stent
- BVS with drug eluting resorbable scaffold-paclitaxel
- STANCE trial
- Stanza stent in treatment of PAD in SFA
 - Prospective, single arm, multicenter trial
 - Problems with late lumen loss due to vessel recoil and neointimal hyperplasia
- SPRINT trial was done after device modification

Absorb Stent

- Had been shown to be safe in coronary arteries
 - CE approval in 2010 and FDA approved in 2016
 - Great short term results but higher risk of target lesion failure compared to drug eluting stents (Xience)
- Balloon expandable, everolimus coated PLLA stent
- BVS in SFA or common/external iliac arteries
- Thick struts

ESPRIT BTK

- Thin strutted scaffold
- Made from PLLA
 - Semi-crystalline bioresorbable polymer engineered to resist vessel recoil
- Scaffold is coated with PDLLA (allows controlled drug release) and everolimus

DISAPEAR Trial

- Absorb Stent
- Retrospective analysis in patients with Rutherford class 4-6 Chronic limb threatening ischemia (CLTI) with infrapopliteal lesions
- Primary patency at 6 and 12 months were 98% and 86% respectively
- Rates of freedom from clinical driven TLR was 98% and 93%
- Freedom from major amputation was 98% at both points
- Complete wound healing in 79.5% at the end of 12 months after index procedure

ABSORB BTK Trial

- Absorb stent
- Prospective, nonrandomized, single center study
- 55 limbs treated
- Implanted in arteries in the proximal calf
- Mean lesion length was 20.1 mm
- Closed due to poor enrollment

Set Backs

- Made of polymer used in dissolvable sutures
- Have heterogeneous (non uniform) inner structure
 - Allows certain locations to degrade faster-promoting large deformation
- Inflation causes internal layer to disrupt and rendered susceptible to structural failure
- Recoil might occur after placement
- Difficulty visualizing stent on fluoroscopy
- First commercial bioresorbable stent pulled off market in 2017 after ABSORB III trial

ABSORB BTK Trial

- Absorb stent
- Prospective, nonrandomized, single center study
- 55 limbs treated
 - 95% had clinical improvement
 - 90% rate for complete wound healing
 - 0% amputation rate
 - Primary patency were 89.2%, 80.3%, and 72.9% at 12, 36, and 60 months
 - Freedom from TLR were 97.2%, 90.7%, and 90.7%

ESPRIT Trial

- ESPRIT I
 - Prospective, multicenter, single arm
 - 35 patients followed through for 3 years
 - Treatment of symptomatic claudication from occlusive vascular disease of the SFA, common, or external iliac artery
 - Lesion lengths of 35.5 mm
 - No related deaths or amputations to 3 years
 - Freedom from TLR at 12 and 24 months in 91.2% and 88.2%
 - Freedom from binary restenosis was 87.9% and 83.9%

LIFE BTK Trial

- 2020-Abbott announced the start of the LIFE BTK trial to evaluate safety and effectiveness of the Esprit BTK Everolimus Eluting Resorbable Scaffold System
- Prospective, randomized controlled clinical trial
- Comparing Esprit BTK to PTA
- Currently no drug eluting stent, drug coated balloons, or bare metal stent approved for use below the knee in the US
- Co-Primary endpoint of composite of limb salvage and primary patency, and freedom from major adverse limb events and peri operative death

Closing

- Bioresorbable stents have the advantage of metallic stents and drug coated balloons
- Offers acute vessel support and limits neointimal hyperplasia and late lumen loss over time
- Ultimately disappears and allow for return of physiologic vasomotion
- Renewed interest with launch of LIFE BTK trial
- Promising future?

Credence BtK BRS

Sirolimus eluting BRS for infra-popliteal artery

Fig 1. The REMEDY stent (Kyoto Medical Planning Co, Kyoto, Japan) is designed as a zig-zag helical coil. Its monofilament struts are 0.24 mm thick. The stent is thermal self-expanding but needs balloon dilatation for optimal wall apposition. Two gold markers are placed at 2.0 mm of each end.