2019 MID-ATLANTIC CONFERENCE 9th ANNUAL CURRENT CONCEPTS IN VASCULAR THERAP

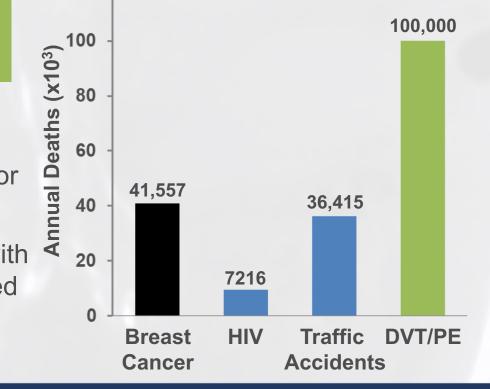
Hilton Virginia Beach Oceanfront Virginia Beach, Virginia

Submassive Pulmonary Embolism: There Is a Role for Routine Catheter Directed Therapy

David Dexter, MD, FACS Assistant Professor of Surgery EVMS Sentara Vascular Specialists

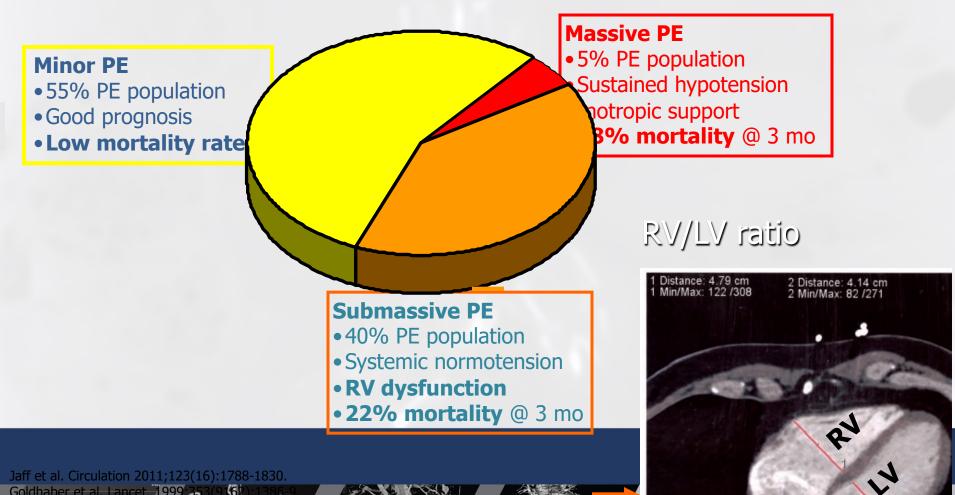
Disclosures

- Local PI
 - Knockout PE
 - Extract PE
- National PI
 - Clout


VTE Is a Major Cause of Morbidity and Mortality With a Significant Economic Burden in the United States

VTE kills more people each year than breast cancer, HIV, and traffic accidents...combined^{27,147}

affected by DVT/PE annually⁷¹


- ~550,000 hospitalizations annually in the United States for DVT and/or PE²⁸
- Healthcare costs associated with DVT/PE in 2011 were estimated to be up to \$10 billion²⁶

CDC Reported Causes of Annual 120 Deaths in the United States^{27,147}

PE Patient Risk Stratification

Jaff et al. Circulation 2011;123(16):1788-1830.

Goldhaber et al. Lancet. 1999: Ouiroz et al. Circulation (2004 Frémont, Chest 2008; 133 Schoef, Circ 2004; 110:32 Kucher, Arch Intern Med

Chronic Issues with PE

 3.8% of 314 consecutive patients who presented with acute pulmonary emboli developed symptomatic pulmonary hypertension within 2 years.

 CMAJ·JAMC
 > Journal Home Page

 Medical knowledge that matters
 Des connaissances médicales d'envergure

<u>CMAJ</u>. 2006 Jun 6; 174(12): 1706. doi: [<u>10.1503/cmaj.051646</u>] PMCID: PMC1471826 PMID: <u>16754894</u>

Pulmonary hypertension after pulmonary emboli: an underrecognized condition

Marc de Perrot,* John Granton,* and Elie Fadel*

Author information
Copyright and License information
Disclaimer

Chronic Issues with PE

- 7068 patients identified with PE
- Data followed for 2 years post event
- 87% made a claim of PH related symptom
- 7.6% were identified as having PH
- Only 55% of those with a symptom had any imaging work up
- PH may be under recognized after PE Monitoring for Pulmonary Hypertension Following Pulmonary Embolism: The INFORM Study

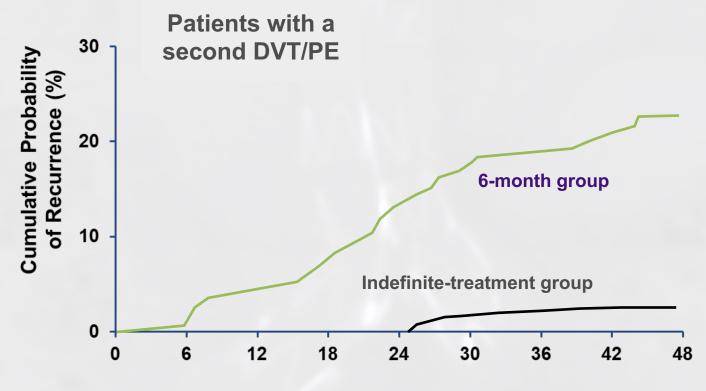
92

Victor F. Tapson, MD,^a David M. Platt, MD,^b Fang Xia, PhD,^b Simon A. Teal, BSc,^c Margarita de la Orden, MSc,^c Christine H. Divers, PhD,^b Carol A. Satler, MD, PhD,^b Vijay N. Joish, PhD,^b Richard N. Channick, MD^d

^aDivision of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, Calif; ^bBayer HealthCare Pharmaceuticals, Whippany, NJ; ^cBayer Pharma AG, Berlin, Germany; ^dDepartment of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston.

How should we treat PE?

ACCP Guidelines Recommend Extended Anticoagulation for Patients With Unprovoked VTE


 In general, 3 months of anticoagulation therapy is recommended for patients with VTE and extended therapy for unprovoked VTE is suggested for patients with low to moderate bleeding risk

 Duration of treatment beyond 3 months is informed by multiple factors, eg, bleeding risk, characteristics of the initial VTE, or other clinical considerations

The DURAC Trial Demonstrated a Continued Risk of Recurrence After Discontinuation of Anticoagulation¹³⁵

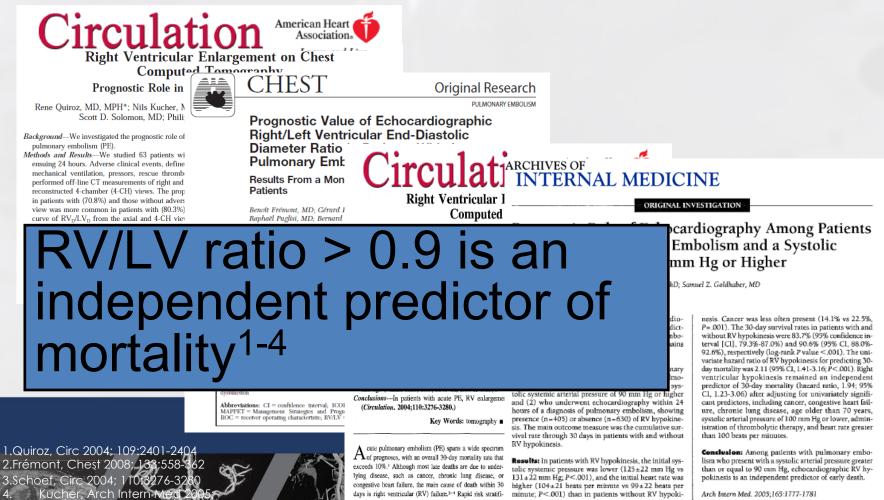
Months

Recurrence was significantly higher in patients who discontinued anticoagulation after 6 months of therapy

The PESI and Simplified PESI Are Validated Tools to Identify Low-Risk Patients

	Score					
Variable	PESI	sPESI				
Age >80 years	Age in years	1		Classification by Tota Score		
Male sex	10	0				
History of cancer	30	1		PESI	sPESI	
History of heart failure	10			Class I ≤65	Low	
History of chronic lung disease	10	1*		Class II 66- 85	risk=0	
Pulse ≥110 bpm	20	1		Class III		
Systolic BP <100 mm Hg	30	1		86- 105		
Respiratory rate ≥30 breaths/min	20	0		Class IV	High risk≥1	
Temperature <36°C	20	0	*Heart failure or history of chronic lung		disease combined	
Altered mental status [†]	60	0	Disovie	ngle 2 G gory of chronic cardio ntation, lethargy, stupor, or cor	na. ‡With or without	
SaO ₂ <90% [‡]	20	1	adm	iniciation of supplementations		

Outpatient Treatment May Be an Option for Patients With Low-Risk PE


		nes With ys, n (%)		Outcomes Within 90 days, n (%)			
	Outpati ent (n=171)	Inpatie nt (n=168)	<i>P</i> Value*	Outpati ent (n=171)	Inpatie nt (n=168)	<i>P</i> Value*	
Recurrent VTE	0	0	0.003	1 (0.6)	0	0.011	
Major bleeding	2 (1.2)	0	0.031	3 (1.8)	0	0.086	
Overall mortality	0	0	0.003	1 (0.6)†	1 (0.6)‡	0.005	

What data do we have to support Sub-Massive Pulmonary Embolism Surgical Treatment?

Why Treat Submassive PE?

165:1777-1781

cation is paramount for identifying high-risk patients and helps select the appropriate treatment strategy. Thrombolysis,5-7 catheter intervention,8.9 or surgical embolectomy5.10 as adjuncts to anticoagulation may rapidly reverse RV failure

PE, RV enlargement on the reconstructed CT 4-chamber (4-CH) view correlates with RV dysfunction on the echocardiogram,19 but its role as a predictor of death is unknown. We

Surgical embolectomy has 20% to 30% mortality. Systemic thrombolysis has a high risk of bleeding, including intra-cranial bleed.

CDT uses a lower dose of thrombolytic drug (about 1/3) and is expected to cause less bleeding.

Am Heart J. 1997 Sep;134(3):479-87.

Echocardiography Doppler in pulmonary embolism: right ventricular dysfunction as a predictor of mortality rate.

Ribeiro A1, Lindmarker P, Juhlin-Dannfelt A, Johnsson H, Jorfeldt L.

ARCHIVES OF INTERNAL MEDICINE

ORIGINAL INVESTIGATION

Association of Persistent Right Ventricular Dysfunction at Hospital Discharge After Acute Pulmonary Embolism With Recurrent Thromboembolic Events

Patients with persistent RV dysfunction at discharge:

8 times more likely to have recurrent PE 4 times higher in mortality rate

than patients with RV dysfunction regressed at discharge⁶

symptomatic, recurrent fatal or nonfatal VTE.

Arch Intern Med. 2006;166:2151-2156

Grifoni, Arch Intern Med 2006; 166:2151-215

Mortality Associated with Right Heart Strain

- proBNP
 - >1000 pg/mL had a high negative predictive value (95% for a complicated course, 100% for death).
 - <600 ng/L indicated uncomplicated outcome in multiple papers.</p>
- Troponin T >0.07 predicted PE mortality, HR 18.1 (P=0.0004). proBNP>7600 ng/L predicted PE mortality, HR 7.3(P=0.007).
- Myoglobin, heart-type fatty acid-binding protein (H-FABP) and D-Dimer were not significant in predicting PE mortality.

Lung, 2015 Oct;193(5):639-51. doi: 10.1007/s00408-015-9752-4. Epub 2015 Jul 2.

Prognostic Value of Biomarkers in Acute Non-massive Pulmonary Embolism: A Systematic Review and Meta-analysis.

Bajaj A¹, Rathor P², Sehgal V³, Kabak B⁴, Shetty A⁵, Al Masalmeh O⁶, Hosur S⁷.

Eur Heart J. 2005 Oct;26(20):2166-72. Epub 2005 May 23.

Kuczynska K

led Clin (Barc), 2015 Mar 15;144(6):241-6. doi: 10.1016/j.medcli.2013.11.041. Epub 2014 Jun 16.

Biomarker-based risk assessment model in acute pulmonary embolism. N-terminal Pro-B type natriuretic peptide as long-term predictor of death after an ac Kostrubiec M¹, Pruszczyk P, Bochowicz A, Pacho R, Szulc M, Kaczynska A, Styczynski G, Kuch-Wocial A, Abramczyl

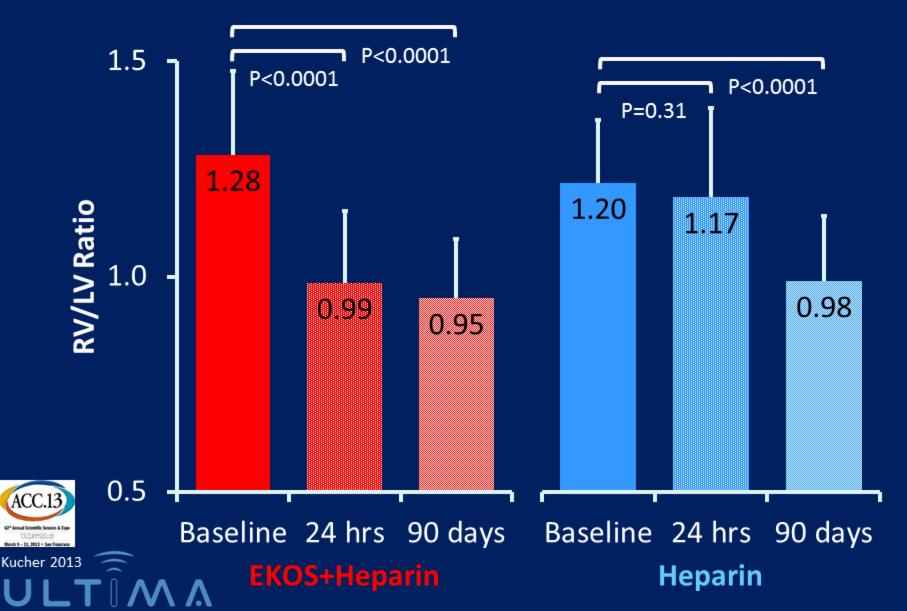
Alonso-Martínez JL¹, Annicchérico-Sánchez FJ², Urbieta-Echezarreta MA², Pérez-Ricarte S².

Rationale against Systemic

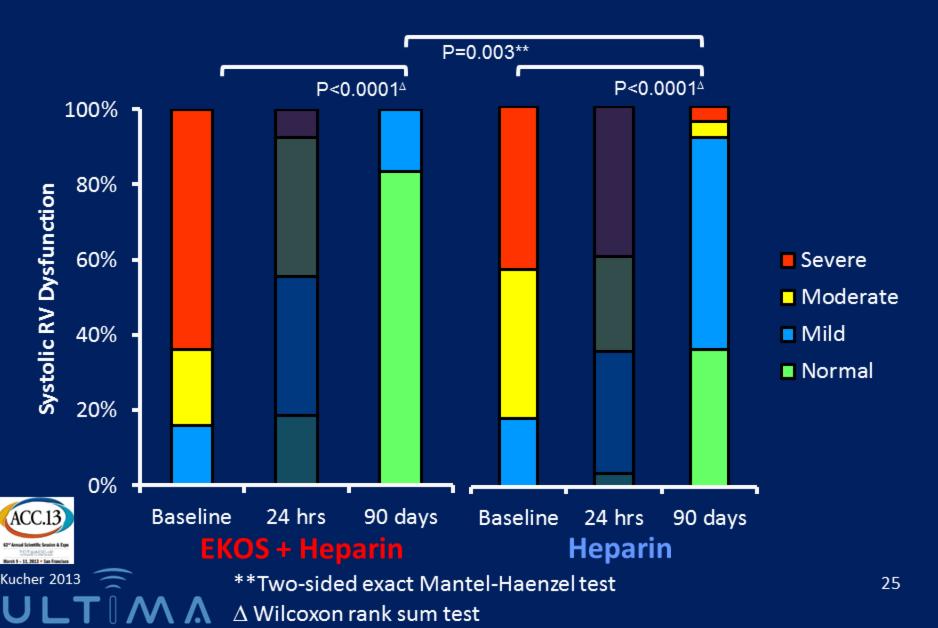
- Systemic PE thrombolysis is associated with a 13% risk of major bleeding and 1.8% risk of intracranial hemorrhage
 - Real world 20% major bleeding and 3% ICH
 - As such, systemic thrombolysis is witheld in 2/3 of patients with massive PE

¹Eur Heart J 2008: 29:2276-2315 ²Am J Cardiol. 2006;97:127-9 ³Circulation 2006;113:577-82

What are the results of Catheter Directed Therapy?



Ultima Trial

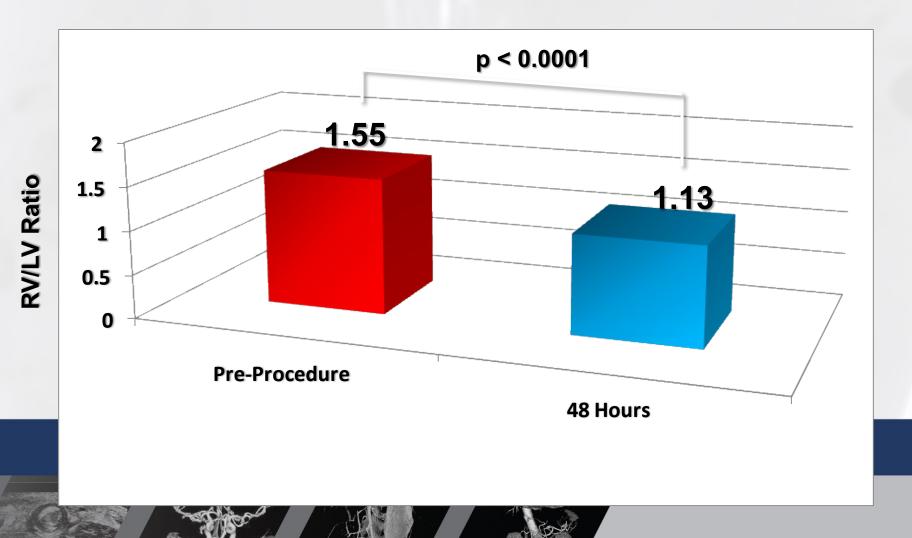

- Multicenter, randomized controlled trial
- Ultrasound assisted catheter directed thrombolysis
- Superior to heparin alone for reversing RV enlargement
- Acute symptomatic PE confirmed by CT
- RV/LV ration >1 on echo (normal is 0.6)

RV/LV ratio (echo)

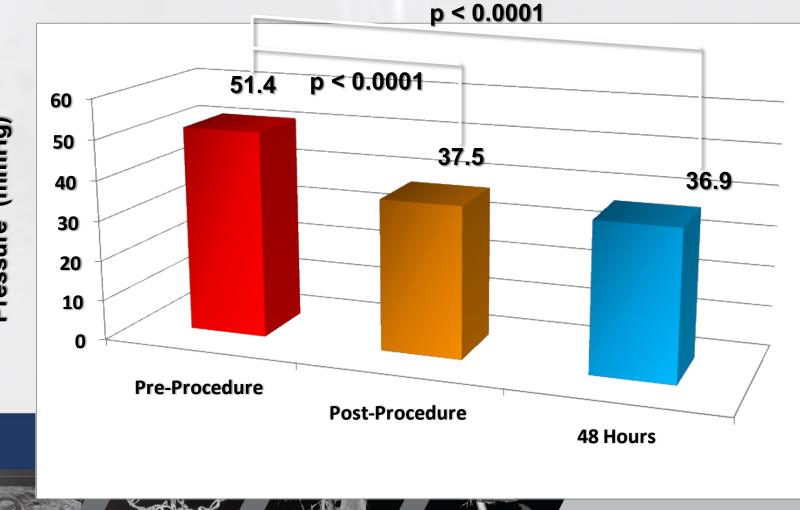
Systolic RV dysfunction

Conclusions

- Catheter directed (ultrasound accelerated) thrombolysis was superior to heparin in reversing right heart dysfunction.
- No increase in bleeding complications
- At 90 days the right heart function is improved with CDT over Heparin


SEATTLE II

A prospective, single-arm, multicenter trial to:


 Assess the Safety and Efficacy of low dose thrombolytic for acute massive and submassive PE

Outcomes: RV/LV Ratio

Outcomes: PA Systolic Pressure

Mean PA Systolic Pressure (mmHg)

Meta-analysis suggested thrombolysis was associated with lower mortality for intermediate-risk PE, recurrent PE

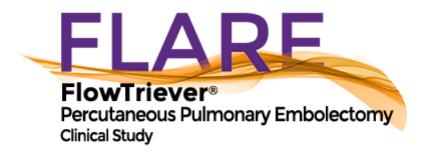
Major bleeding was also significantly increased, but not for patients 65 years and younger

Outcome of Interest	No. of Events/No. of Patient	No. Needed to	<i>P</i> Value		
(No. of Studies Reporting)	Thrombolytic Group	Anticoagulant Group	Treat or harm	Pvalue	
All-cause mortality (16)	23/1061 (2.17)	41/1054 (3.89)	NNT=59	.01	
Major bleeding (16) ^a	98/1061 (9.24)	36/1054 (3.42)	NNH=18	<.001	
ICH (15)	15/1024 (1.46)	2/1019 (.19)	NNH=78	.002	
Recurrent PE (15)	12/1024 (1.17)	31/1019 (3.04)	NNT=54	.003	
Age > 65 y					
All-cause mortality (5)	14/673 (2.08)	24/658 (3.65)	NNT=64	.07	
Major bleeding (5) ^a	87/673 (12.93)	27/658 (4.10)	NNH=11	<.001	
Age ≤ 65 y					
All-cause mortality (11)	9/388 (2.32)	17/396 (4.29)	NNT=51	.09	
Major bleeding (11) ^a	11/388 (2.84)	9/396 (2.27)	NNH=176	.89	
Intermediate-risk PE					
All-cause mortality (8)	12/866 (1.39)	26/889 (2.92)	NNT=65	.03	
Major bleeding (8) ^a	67/866 (7.74)	20/889 (2.25)	NNH=18	<.001	

Chatterjee S et al. Thrombolysis for Pulmonary Embolism and Risk of All-Cause Mortality, Major Bleeding, and Intracranial Hemorrhage: a Meta-analysis. JAMA 2014; 311(23):2414-2421. 28

Lysis in submassive PE

Mortality meta-analysis


	Throm	bolytics	Anticoa	agulants				
Source	# of Events	# of Patients	# of Events	# of Patients	OR (95% CI)	Favors Thrombolytics	Favors Anticoagulants	Weight, %
Goldhaber et al, ² 1993	0	46	2	55	0.16 (0.01-2.57)			5.3
Konstantinides et al, ³ 2002	4	118	3	138	1.58 (0.35-7.09)			18.4
TIPES, ²⁹ 2010	0	28	1	30	0.14 (0.00-7.31)			2.7
Fasullo et al, ¹¹ 2011	0	37	6	35	0.11 (0.02=0.58)			15.1
MOPETT, ¹⁰ 2012	1	61	3	60	0.35 (0.05-2.57)			10.5
ULTIMA, ³⁰ 2013	0	30	1	29	0.13 (0.00-6.59)			2.7
TOPCOAT, ⁹ 2014	1	40	1	43	1.08 (0.07-17.53)		•	5.3
PEITHO, ⁸ 2014	6	506	9	499	.66 (0.24-1.82)		-	40.0
Total	12	866	26	889	.48 (0.25-0.92)	•		100.0
Heterogeneity: $\chi_7^2 = 7.63$		² = 8%				0.01 0.1 1	.0 10 100	
Overall effect: z = 2.22; P	=.03					OR (9	5% CI)	

	Intermediate-risk PE				
Ī	All-cause mortality (8)	12/866 (1.39)	26/889 (2.92)	NNT=65	.03
	Major bleeding (8) ^a	67/866 (7.74)	20/889 (2.25)	NNH=18	<.001

Chatterjee S et al. Thrombolysis for Pulmonary Embolism and Risk of All-Cause Mortality, Major Bleeding, and Intracranial Hemorrhage: a Meta-analysis. JAMA 2014; 311(23):2414-2421. 29

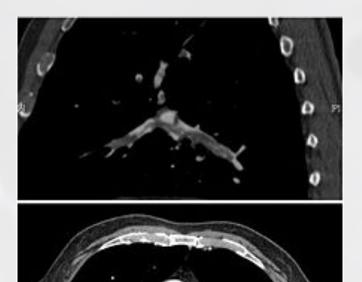
Other Data

- Prospective multicenter single arm
- 106 patients at 18 sites
- Proximal PE and RH Strain
- RV/LV ratio decreased from 1.53 to 1.15 at 48 hours

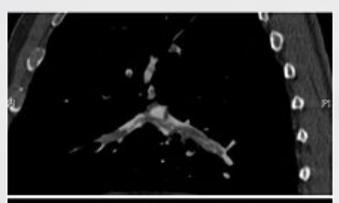
Penumbra Trial

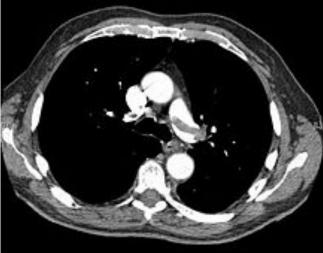
- Extract Pulmonary Embolism
 - Single Arm trial
 - Suction Thrombectomy with Cat-8 Penumbra
 - Measurement of Thrombus Burden and Pressures
 pre- and post- procedure

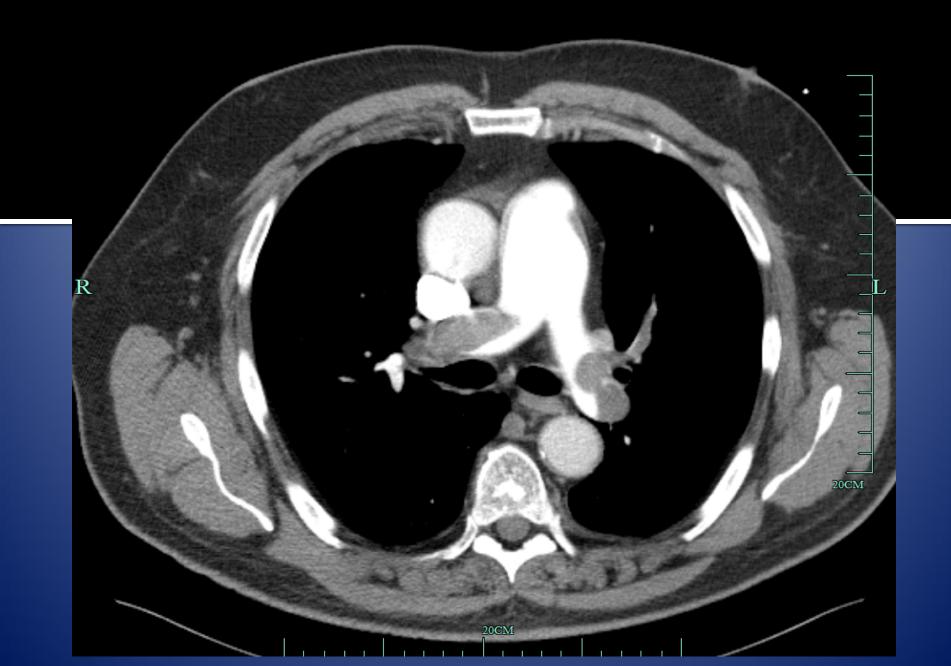
What Would You Do?


WWYD?

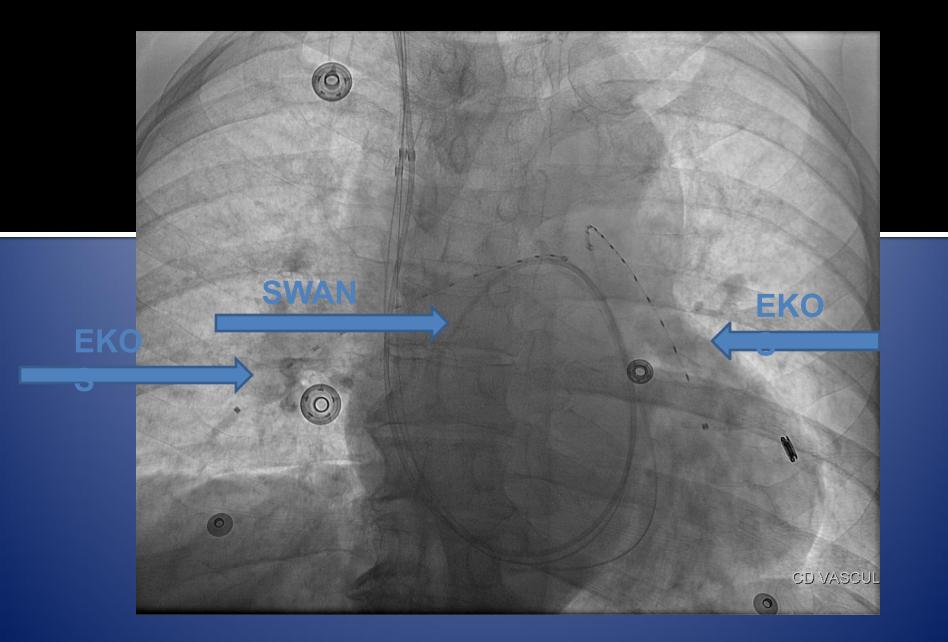
- 45 year old female comes to the ER with chest pain and shortness of breath.
- She has had a prior DVT for which she received coumadin for a year.
- She stopped her blood thinner 3 months ago.
- Elective ankle surgery 2 weeks ago.
- HR 105
- BP 100/60
- O2 sat 98% on 2L NC


WWYD?


- Echo shows dilated right ventricle
- RV/LV Ratio 1.2
- BNP 3200
- Troponin .5


WWYD?

- What now?
- Who makes the decision?
- How do they make the decision?
- Will the best treatment plan be offered to this patient?



POD #1

- TPA administered at 1mg/hr/catheter
- Low dose heparin in each sheath
- Swan PA pressures monitored until resolution of PA hypertension
- Fibrinogen, PTT, CBC and hemodynamics monitored for signs/symptoms of bleeding

Post Op Care

- Discharge planning
 - Plan for 12 months of anticoagulation
 - Compression stockings 30-40mmHg for two years
 - 72 hour echo to look for resolution of right heart strain
 - 3 month follow up appt. to assess for resolution of right heart strain and symptoms of post thrombotic syndrome

Treatment Algorithm

Conclusion

- Submassive PE is associated with poor long and short term outcomes.
- The reversal of Right Heart Strain leads to better results.
- The routine use of catheter directed therapy in sub-massive PE should improve short and long term outcomes.

