2017 MID-ATLANTIC CONFERENCE

7th ANNUAL CURRENT CONCEPTS IN

VASCULAR THERAPIES

Manuela Schuksz MD PhD Sentara Vascular Specialists 4/21/2017

Cell and Gene Therapies for Non-Reconstructable Critical Limb Ischemia

Critical Limb Ischemia

- Defined as chronic limb ischemia with either rest pain or tissue loss (non-healing ulcers or gangrene)
- Prognosis
 - 25% major limb amputation within 1 year
 - 25% die of cardiovascular complications within 1 year
 - 50% mortality at 5 years
- Treatment
 - Medical
 - ASA, statin
 - Wound care
 - Intervention
 - Amputation
 - Revascularization
 - Surgical bypass
 - Endovascular intervention

Non-reconstructable Critical Limb Ischemia

- No option for intervention
 - No suitable target vessel for bypass
 - Small vessel disease in the foot
 - Extensive co-morbidities
- Dismal prognosis
 - Almost 40% amputation rate at 6 months
- Quality of Life comparable to patients with advanced cancer
- Treatment Options
 - Intensive wound care (NPWT, debridement, abx) at a dedicated wound center
 - Some reports with up to 55% healing rates
 - Slow, laborious, unpredictable outcomes
 - Pharmacotherapy (antiplt, vasodilators, hyperbaric O2) of unproven benefit
 - Primary amputation
 - Non-reconstructable disease accounts for ~ 60% of secondary amputations
 - Failed revasc 2/2 disease progression, recurrent ischemia, persistent infection/necrosis despite patent revascularization

Primary Amputation as a Viable Option in a Subset of Patients with Non-reconstructable Critical Limb Ischemia

- Maintenance of ambulation has been shown to be an important factor in preserving independence and quality of life
- Amputation and prosthetic rehabilitation may be an excellent option to achieve independence and preserve quality of life
 - Good-risk patients after BKA (SM Taylor et al, JVS 2005)
 - Maintenance of ambulation may approach 70%
 - Maintenance of independence may approach 90%
 - Use of iPop may lead to
 - Faster return to ambulation (EM Burgess et al 1969)
 - Lower incidence of revision, and faster return to ambulation (MM Ali et al, Ann Vasc Surg 2013)
- Palliative AKA appropriate for patients too ill to realize the benefit of revascularization
 - Nonambulatory, elderly, knee contractures
 - Preop functional status is most important predictor of postop outcome (SM Taylor et al JVS 2006)

Novel Therapeutic Approaches for Non-reconstructable CLI

- Regenerative Therapies
 Enhance intrinsic cellular/tissue physiologic mechanisms to provide increased blood flow to ischemic limbs
 - Targeting growth factors and gene products involved in angiogenesis and arteriogenesis
 - Stem and progenitor cells participating in vascular repair and proliferation

- Advanced delivery methods
 - Gene therapy
 - Molecular therapy
 - Cellular delivery

- All 3 mechanisms come into play in PAD
- Significant heterogeneity between patients in vascular response to chronic ischemia
 - Same degree of occlusive disease may yield very different functional impairments in different patients
 - Same degree of occlusive disease can yield variable amounts of collaterals

Therapeutic Angiogenesis for Critical Limb Ischemia

- Concept:
 - Use of angiogenic growth factors or stem cells in ischemic limbs to
 - Grow blood vessels
 - Improve blood flow
 - Increase tissue perfusion
- VEGF, FGF, HGF studied in animal models
 - Collateral vessel formation
 - Increased blood flow
 - Increased capillary density
- VEGF, FGF, HGF have been studied in the setting of RCT, with mixed results
 - All have confirmed feasibility and safety
 - No "off-target" angiogenesis
 - No occult tumor growth
 - No progression of diabetic retinopathy

Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia

Jill Belch, William R Hiatt, Iris Baumgartner, I Vickie Driver, Sigrid Nikol, Lars Norgren, Eric Van Belle, on behalf of the TAMARIS Committees and Investigators

Lancet 2011; 377: 1929-37

- Phase III trial
- 525 patients with non-reconstructable disease, 30 countries
- Randomized to treatment vs. placebo
- 8 IM injections on day 1, 15, 29, 43
- Endpoints
 - Primary:
 - Major amputation or death within 1 yr
- Results:
 - No difference in 12-month amp free survival when compared to placebo (63% vs. 67%, P=0.48)
 - Major amputation/death in 20-25% of patients

Figure 4: Cumulative incidence curves over time of components of the primary endpoint

(A) First major amputation of the treated leg. (B) Death rate over time. NV1FGF=non-viral 1 fibroblast growth factor.

Gene Therapy (2010) 17, 1152–1161 © 2010 Macmillan Publishers Limited All rights reserved 0969-7128/10

www.nature.com/gt

ORIGINAL ARTICLE

Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia

H Shigematsu¹, K Yasuda², T Iwai³, T Sasajima⁴, S Ishimaru⁵, Y Ohashi⁶, T Yamaguchi⁷, T Ogihara⁸ and R Morishita⁹

¹Department of Vascular Surgery, Tokyo Medical University, Tokyo, Japan; ²Hokkaido Chuo Rosai Hospital Spinal Cord Injury Center, Japan Labour Health and Welfare Organization, Hokkaido, Japan; ³Tsukuba Vascular Center and Buerger's Disease Research Institute (NPO), Moriya Keiyu Hospital, Ibaraki, Japan; ⁴First Department of Surgery, Asahikawa Medical University, Hokkaido, Japan; ⁵Center for Endovascular Therapy, Toda Chuo General Hospital, Saitama, Japan; ⁶Department of Biostatistics, School of Public Health, University of Tokyo, Tokyo, Tokyo, Japan; ⁷Department of Clinical Trial Data Management, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; ⁸Osaka General Medical Center, Osaka, Japan and ⁸Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan

- Multicenter, randomized, double blind, placebo controlled
- 44 pts with non-reconstructable CLI
- Evaluate for efficacy and safety
- End points:

Primary

- Reduction of ulcer size
- Decrease in rest pain

Secondary

- QoL
- Decrease in ischemic ulcer size
- Other studies with similar results
- Large phase III trial started but terminated in 2016 due to low enrollment

b	Change of rest pain (VAS) (mm)	5 0		Study medication	Stu	ıdy n	nedic	ation			
	(VA	-5	ŀ	T							
	pain	-10	ŀ		J		Τ				
	est]	- 15	ŀ	<u> </u>			+		J	Ŧ	Τ
	of r	- 20	ŀ				Ī		1	 	 †
	ange	- 25	ŀ						I	Ì	1
	Chi	-30	L					-			L
	100000			0 2	4		6		8	10	12
						Γime	(we	eeks)		

Placebo	N =	12	11	11	11	10	10
HGF	N =	24	23	22	22	22	21

Table 2 – Randomized clinical trial results of angiogenic growth factors versus placebo in patients with critical limb ischemia.

	FGF type 1 (NV1FGF) [14]	FGF plasmid, NV1FGF TAMARIS trial, Phase III [16]	HGF plasmid, AMG0001, AnGes trial [18]
No. of patients	51	525	Drug, 156; placebo, 50
Study design	Phase I, randomized, placebo-controlled	Phase III, randomized, placebo- controlled	Phase II and III, randomized, placebo- controlled
Rutherford class CLI severity	4 and 5	4 and 5	4 and 5
Method of drug delivery	IM injection	IM injection	IM injection
No. of treatments	1 vs 2	4	2 or 3
Study length (months)	6	12	3–36
Study endpoints	Pain reduction; P < .001	Amputation free-survival: drug, 65%; placebo, 67%; P = .48	Improved ulcer healing; P < .05
	Ulcer healing; P < .01	Amputation: drug, 26%; placebo, 21%; P = .31	Increase in tissue $TcPO_2$; P < .01
	Increased TcPO ₂ ; P < .01	Death: drug, 18%; placebo, 15%; $P = .53$	Reduction in rest pain; $P < .05$
Efficacy demonstrated	Yes	No	Yes
Safety issues		None	None

CLI = critical limb ischemia; FGF = fibroblast growth factor; HGF = hepatocyte growth factor; IM = intramuscular.

Stem Cell Therapies

Mesenchymal Stem Cells (MSCs)

- Multipotent non-hematopoietic stem cells
 - Found in myriad tissues
 - 1st isolated from bone marrow
 - Optimal source for therapeutic use yet TBD
 - Capacity for self-renewal
 - Differentiation into many different cell types
- Home to and survive in ischemic environments
 - Transdifferentiation -> become vascular cell types
 - Paracrine effects -> stimulate angiogenesis/arteriogenesis via growth factor release
- Currently most actively studied at preclinical and clinical levels
 - Ease of isolation
 - Capacity for ex vivo expansion

Yan, Jet al, Stem Cell Rev and Rep, 2013

Once in ischemic tissue, stem cells have capacity to perform all functions required during angio/arteriogenesis

Mesenchymal Stem Cells

- Preclinical studies showed promising results in animal models
 - MSCs transplanted into ischemic areas express endothelial markers and promote angiogenesis, arteriogenesis
 - Leading to significantly increased limb blood flow recovery
- Intramuscularly injected MSCs localize to ischemic hind limb
 - No significant migration to other tissues
- Multiple active clinical trials to study the effect of stem cell therapy in CLI

364 Stem Cell Rev and Rep (2013) 9:360–372									
Table 2 On-going MSC clinical trials									
Identifier	Location	Study status	Phase	Cell product	Estimated enrollment	Injection method	Main study design	Time frame	Outcomes measures
NCT01079403	Spain	Unknown	I/II	(A)Adipose-MSC	36	IA	RT, PA, S/E	12 months	ABI, DSA, MRA
NCT01483898	USA	On-going	Ш	Ixmyelocel-T	594	IM	RT, PA, E, DB	18 months	AFS, WH
NCT01351610	Germany	On-going	I/II	(A)BM-MSC	30	IV	RT, PA, S/E	12 months	ABI, QoL, RP, TcPO2, WH
NCT01257776	Spain	On-going	I/II	(A)Adipose-MSC	36	IA	RT, PA, S/E	12 months	ABI, AFS, DSA
NCT01456819	Malaysia	On-going	П	(A)BM-MNC + MSC	50	IM	RT, PA, E	12 months	ABI, DSA, ETT, VAS, TcPO2, WH
NCT01216865	China	Not yet recruiting	I/II	Cord-MSC	50	IM	RT, PA, S/E	6 months	ABI, AFS, Pain, WT, WH
NCT01211028	France	On-going	I/II	(A)Adipose-MSC	15	IM	NR, SGA, S	6 months	AE
NCT00883870	India	On-going	I/II	(AI)MSC	20	IM	RT, PA, S/E, DB	6 months	ABI, TcPO2
NCT01484574	India	On-going	П	(AI)BM-MSC	126	IM	NR, SGA, S/E	24 months	ABI, AFS, MRA, QoL, TcPO2, WT
NCT01686139	Israel	Not yet recruiting	I/II	(Al)BM-MSC	20	IM	NR, SGA, S	6 months	AE, Pain, VAS, WH

Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia

Richard J. Powell, MD, ^a Anthony J. Comerota, MD, ^b Scott A. Berceli, MD, ^c Raul Guzman, MD, ^d Timothy D. Henry, MD, ^c Edith Tzeng, MD, ^f Omaida Velazquez, MD, ^g William A. Marston, MD, ^h Ronnda L. Bartel, PhD, ⁱ Amy Longcore, MS, ⁱ Theresa Stern, PhD, ⁱ and Sharon Watling, PhD, ⁱ Lebanon, NH; Toledo, Ohio; Gainesville, Fla; Nashville, Tenn; Minneapolis, Minn; Pittsburgh, Pa; Miami, Fla; Chapel Hill, NC; and Ann Arbor, Mich

- Prospective, randomized, double-blinded, placebo controlled multicenter trial (18 US centers)
- 86 unreconstructable CLI patients
- BM aspirate expanded ex vivo, then injected into 20 sites in ischemic LE
- Endpoints
 - Primary:
 - Safety
 - Secondary
 - Major amputation-free survival
 - Time to 1st occurrence of treatment failure (amp, death, new gangrene, doubling of wound size)
 - Major amputation rate
 - Wound healing
- Results
 - No difference in adverse events
 - Increased time to treatment failure and amputation-free survival in treated group
 - Decreased major amp rate (19% vs 43%)
 - Improved wound healing

REVIVE-CLI

- Phase III RCT based on findings of RESTORE-CLI
- Started in 2013
- Enrolled 40 pts with non-reconstructable disease (594 planned)
- Halted due to slow enrollment and company shift of focus to dilated cardiomyopathy
- FDA approved phase II pilot study
 - BMAC allows for immediate IM injection of stem cells prepared in the OR
 - 48 pts randomized 2:1 BMAC:placebo
 - 3 months f/u in pts with CLI (tissue loss)
 - Major amputation in 39% treated vs. 71% in placebo patients
 - Duration to amputation was increased
 - Phase III trial now under way

MOBILE

- Phase III trial, currently in progress
- Double blind RCT
- BMAC vs placebo
- 152 participants
- Outcomes assessed
 - Time to major amputation or death
 - Several secondary outcome measures incl perfusion and QoL
 - 5 year amputation free survival

- Estimated study completion May 2020
 - Treatment and 1yr f/u has been completed
 - Long-term follow up is ongoing
 - No initial data analysis published to date

Conclusions

- There is no FDA-approved biological therapy for CLI
- Biologic therapies have shown promise in the treatment of patients with CLI several studies
- Work by promoting tissue angiogenesis in the skeletal musculature
 - tissue regeneration and promotion of distal wound repair
- Recent clinical trials have shown that these biologic therapies are safe
- On-going phase III trials are focusing on stem cell therapy (BMAC)
 - Powered to determine if amp-free survival can be increased
 - Help elucidate frequency of therapy, dose optimization
- Currently no large phase III gene therapy trials underway
 - Phase I/II trials involving genetically engineered stem cells overexpressing vascular growth factors – recruiting
- The effect of concomitant comorbidities, such as DM, on these treatment modalities remains to be elucidated
- Future applications may include biologic therapies in CLI patients before or as an adjunct to endovascular and/or open repair

2017 MID-ATLANTIC CONFERENCE

7th ANNUAL CURRENT CONCEPTS IN VASCULAR THERAPIES

Thank you for your attention