2022 MID-ATLANTIC CONFERENCE 10th ANNUAL CURRENT CONCEPTS IN VASCULAR THERAPIES

APRIL 28-30

Hilton Virginia Beach Oceanfront Virginia Beach, Virginia

CEPHALIC VEIN THROMBOSIS

2022 MID-ATLANTIC CONFERENCE 10th ANNUAL CURRENT CONCEPTS IN VASCULAR THERAPIES

Jason R. Moore, MD FACS, FSVS, RPVI

Objectives

- Chronic Limb Threatening Ischemia (CLTI)
 - Definition
 - Risk Factors
 - Natural History
 - Diagnosis
 - Classification of Disease

CLTI Definition

• Objective evidence of atherosclerotic PAD in association with ischemic rest pain and/or tissue loss

- Replace the antiquated "Critical Limb Ischemia"
 - Rest Pain with ankle pressure <40 mmHg
 - Tissue loss with ankle pressure < 60 mmHg

• Clinical Presentation with hemodynamic confirmation as opposed to pure hemodynamic measurements

Risk Factors for PAD

- <u>Smoking</u>
- <u>Diabetes</u>
- HTN
- HLD
- Air Pollution
- CKD/ESRD
- Age
- Obesity
- Sedentary Lifestyle

Risk Factors

CLTI is an end-stage manifestation systemic atherosclerosis:

- Often accompanied by significant CV disease
- High mortality from MI and stroke
- Prognosis is Poor (1yr mortality ~20-26% without aggressive treatment of risk factors)

Approximate odds ratios for risk factors for symptomatic peripheral arterial disease

J Vasc Surg 45:s9A, 2007

 More recent studies estimate the rate of progression to CLTI from PAD is ~5-21% at 5 years

(J Am Coll Cardiol 2006;47(6):1239-1312) (Eur J Vasc Endovas Surg 2016;51:395-403)

 ~50% of CLTI patients had no prior diagnosis of PAD

(J Vasc Surg 2003;37(3):704-708)

Alan T. Hirsch et al. J Am Coll Cardiol 2006; 47:1239-1312.

Natural History of PAD

5 year Amputation Rates

Comorbidities/Mortality

Patients with CLTI are highrisk for premature mortality given the associated comorbidities.

٠

- Reniecke et al. demonstrated 4 year mortality rates as follows
 - Rutherford 1-3: 18.9%
 - Rutherford 4: 37.7%
 - Rutherford 5: 52.2%
 - Rutherford 6: 63.5%

Eur Heart J 2015;36(15):932-938

Diagnostic Evaluation

- History
 - Description/Duration of Symptoms
 - Ischemic rest pain usually affects the forefoot
 - Neuropathy
 - CV risk factors
 - Drug history
 - Previous vascular intervention
 - Frailty/HRQL assessment
- Physical
- Non-Invasive/invasive imaging

Segments of Disease

- Symptoms occur distal to disease
 - Aorto-iliac- hip/buttock
 - Fem-pop- calf
 - Tibio-peroneal- ???
- One segment
 - Claudication
- Two segments
 - Rest/pain/non-healing wounds
 - Chronic Limb Threatening Ischemia

ARTERIAL OCCLUSION SITES Aortic/iliac occlusion Femoral occlusion Popliteal/tibial occlusion RELATED CLAUDICATION AREAS Gluteal and thigh claudication Calf claudication Calf claudication or foot pain

Disease Distribution

- Vascular Exam begins with checking for pulses
- Cap refill (>5 seconds typically)
- Cool dry skin
- Muscle atrophy
- Hair loss to limb

Buerger's sign

Global Vascular Guideline on the Management of Chronic Limb Threatening Ischemia

Ankle Pressure and ABI

- ABI= highest ankle pressure divided by highest brachial systolic pressure
- First-line noninvasive hemodynamic test in all patients

Toe Pressure and TBI

- Toe pressures less often affected by incompressibility
- Toe pressures are generally 20-40 mm Hg lower than ankle pressures
- Toe pressures <30 mmHg are typically associated with advanced ischemia

Pulse Volume Recordings

- Use air plethysmography to provide waveform analysis of blood flow
- May help establish diagnosis as well as localization and severity of PAD
- Air-filled cuff around extremity at segmental levels(i.e., thigh, calf, foot)
- If limb not well perfused minimal to no change in cuff volume
- Accuracy maintained in patients with noncompressible vessels
- Not precise in distal disease and not accurate in patients with CHF or low stroke volumes

- Segmental Pressures
- Can provide information on anatomic localization of lower limb vascular disease
- Several other noninvasive tests
- Laser Doppler flowmetry
- Transcutaneous Oximetry (TcPO2)
- Skin perfusion pressure

Global Vascular Guideline on the Management of Chronic Limb Threatening Ischemia

Global Vascular Guideline on the Management of Chronic Limb Threatening Ischemia

Vascular Anatomy

Vascular Anatomy

- Duplex Ultrasound
 - Advantages
 - Noninvasive
 - Low cost
 - No iodinated contrast
 - No radiation

Mobile

-Disadvantages

- Time consuming
- Operator Dependent
- NO continuous lesion map
- Poor at estimating collateral blood supply

Diagnostic Evaluation- Imaging of Vascular Anatomy

CT Angiography

- High Sensitivity and Specificity in aortoiliac (95 and 96%) and fem-pop segments (97 and 94%)
- Inferior in the infra-popliteal segments compared with digital subtraction angiography (95% and 91%)

JAMA 2009;301:415-24

Diagnostic Evaluation- Imaging of

Vascular Anatomy

- MRA
 - Potential to produce images comparable in quality to DSA
 - No exposure to radiation or iodinated contrast
 - Can fail visualize vessel wall calcification
 - Problems visualizing in-stent restenosis

Diagnostic Evaluation- Imaging of

Vascular Anatomy

- DSA
 - With advent of other imaging diagnostic less common
 - Still gold standard
- CO2 Angiography
 - Can be used in patients with contrast allergy or severe CKD
 - Can cause significant discomfort

Classification of Disease

- The Use of multiple classification systems (Rutherford, Fontaine, Wagner, TASC) has hindered the development of treatment algorithms given the heterogeneity amongst the commonly used systems
 - Historic classifications tend to focus more on pure hemodynamic or anatomic features
 - Ischemia-dominant models do not appreciate the absolute perfusion that needs to be considered in diabetic patients with underlying neuropathic changes

Classification of Disease Severity

SVS WIFi Index

- Wound: extent and depth
- Ischemia: perfusion/flow
- Foot Infection: presence and extent
- 4 point scale
 - 0=none
 - 1=mild/moderate
 - 2=moderate/severe
 - 3=severe

J Vas Surg 2014;59:220-234

WIFi

Clinical Stages of Major Limb Amputation Risk based on WIFi Classicication

Risk of amputation	Proposed clinical stages	WIfI spectrum score		100%			92%	Amputation
Very low	Stage 1	W0 I0 fl0,1 W0 I1 fl0 W1 I0 fl0,1 W1 I1 fl 0	dno	90%				1-Yr AFS
Low	Stage 2	W0 10 ft2 W0 11 ft1 W0 12 ft0,1 W0 13 ft0 W1 10 ft2 W1 11 ft1 W1 12 ft0 W2 10 ft0/1	tients in the gr	80% 70% 60%				64% 63%
Moderate	Stage 3	W0 10 f13 W0 12 f11,2 W0 13 f11,2 W1 10 f13 W1 11 f12 W1 12 f11 W1 13 f10,1 W2 10 f12 W2 11 f10,1 W2 12 f10 W3 10 f10,1	Percentage of par	50% 40% 30% 20%			8%	
High	Stage 4	W0 11,2,3 fl3 W1 11 fl3 W1 12,3 fl2,3 W2 10 fl3, W2 11 fl2,3 W2 12 fl1,2,3 W2 13 fl0,1,2,3 W3 10 fl2,3 W3 11,2,3 fl0,1,2,3		10%	Stage 1 (N=39)	Stage 2 (N=50) SVS WIFI Cli	Stage 3 (N=53)	Stage 4 (N=59)

Benefit from revascularization

Thank You

-

