2022 MID-ATLANTIC CONFERENCE 10th annual current concepts in VASCULAR THERAPIES

Hilton Virginia Beach Oceanfront Virginia Beach, Virginia

Sentara Vascular Specialists

2022 MID-ATLANTIC CONFERENCE 10th ANNUAL CURRENT CONCEPTS IN VASCULAR THERAPIES

Central Venous Obstructions: Surgical and Endovascular Options for Care

Central Veins

Central Venous Obstruction

- Time Frame: Acute vs Chronic
- Etiology: Intrinsic venous factors vs extrinsic compression
- Symptomatic vs Asymptomatic
- Upper extremity vs Lower extremity CVO

Central Venous Obstruction

- Time Frame: Acute vs Chronic
- Etiology: Intrinsic venous factors vs extrinsic compression
- Symptomatic vs Asymptomatic
- Upper extremity vs Lower extremity CVO

Ilio-caval Venous Obstruction

- The commonest cause is DVT (PTS)
- Other causes are non-thrombotic (NIVL)
 - Trauma
 - Irradiation
 - Congenital anomalies (aplasia or hypoplasia, e.g. Klippel-Trenaunay syndrome)
 - Extrinsic compression (e.g. May-Thurner Syndrome, Large fibroids, Malignant tumors, etc)

Diagnosis

- Clinically
- Venous duplex
- CT venogram
- Ascending venography
- IVUS

Ilio-caval CVO Management

• Endovascular therapy is the primary modality of therapy

• Open surgical reconstruction when endo fails or inappropriate

Hybrid repair may be needed in certain cases to improve venous inflow

Endovascular Therapy

- Access (Femoral vein in mid-thigh, Popliteal vein, IJV)
- Venography
- Wire crossing. Use the tip rather than a loop.
- Long sheath, stiff catheters to assist with crossing
- Through and through access may be needed
- Can be pretty aggressive with the wire.
- Beware of accessing the spinal canal
 - Large retroperitoneal collaterals
 - Going towards the midline is a clue
 - Use multiple views

Endovascular Therapy

- IVUS after crossing
 - Evaluate possibility of thrombotic component (may add thrombolysis/thrombectomy component to therapy)
 - Exactly evaluate the proximal and distal ends of the lesion for adequate treatment (commonest cause of early stent thrombosis is inadequate lesion coverage)
 - Evaluate the exact degree of stenosis (much more sensitive than venography)
 - Evaluate the size of the normal vessel for adequate sizing

Endovascular Therapy

- Angioplasty alone is not enough.
- Adequate PTA (IVC 20-24 mm, CIV 16-18 mm, EIV 14-16 mm)
- Large sized stents (Corresponding sized stents)
- Again the lesion has to be completely covered
- The stent needs to protrude well into the IVC
- Completion venogram and IVUS to ensure adequate flow and stent wall apposition

llio-caval stenting

Ilio-caval stenting

Sometimes Routine Methods don't work

 Right internal jugular venous access was obtained, and a catheter was advanced to the infra-renal IVC stump.

- Right common femoral vein access was also obtained, and an 8-Fr was advanced to the inferior site of ligation.
- Large collateral veins were identified and avoided.

- Crossing catheter and hydrophilic wire was used to select a channel but could not connect the dots.
- Ended up in the retroperitoneum from below

- Perforation into the retroperitoneum deliberately
- Confirm not in a venous collaterals
- Confirm no other injury

 Rotational Angiography to align the top and bottom catheters

- TIPS set was used from femoral access
- 12 Fr sheath

A typical TIPSS kit : 1 – outer sheath, 2 – guide cath , 3- metal stiffner 4 - catheter for needle , 5 – TIPSS needle.

- A aortic occlusion balloon was then advanced from IJ access
- Femoral sheath/TIPS catheter were directed towards the balloon
- · Catheter and needle were advanced.
- Multiple views were taken to ensure we were in a safe plane

- A sheath was placed in the suprarenal IVC to support the balloon
- Multiple angles were taken to align the TIPS system to the aortic occlusion balloon
- The needle was advanced and the aortic occlusion balloon perforated.

- Cavagram through the TIPS needle confirms the position within the IVC
- Stiff wire was placed

- Sequential angioplasty of the retro-peritoneal track to 18mm was performed to prepare the track for stenting.
- IVUS was then utilized to confirm correct anatomy and determine the length of stent needed.

- A 20x55 Wallstent was placed and post-dilated to 18mm
- Started on Plavix and Xarelto
- 1 night in hospital and discharged to home

Outcomes

- Minimal morbidity: 0.4% in a large series (Neglen, et al, JVS, 2007)
- Mortality: almost none

• Excellent patency rates for the ilio-caval stents

Open Surgical Reconstruction

• Failed endovascular therapy

• Severely symptomatic patients with reasonable life expectancy

 Ideal patient: unilateral iliac vein occlusion, minimal distal thrombus/venous reflux

Open Surgical Reconstruction

- Essentially venous bypass
- Autogenous venous grafts are best:
 - GSV
 - Femoral vein
 - Spiral and panel grafts are less successful than in the SVC
- Externally supported ePTFE grafts are the usual conduits
- Other biologic grafts are of less use

Spiral Graft

- Venous bypass have higher tendency to thrombosis
- Surgical AVF created to improve flow through the graft especially with prosthetic bypasses
- Long term anticoagulation in prosthetic grafts

Palma Operation

(Garg et al, JVS, 2011)

Palma Prosthetic

(Garg et al, JVS, 2011)

Femoro-caval bypass

Complex Reconstruction

Complex Reconstruction

Outcomes

- Limited experience in selected centers
- Literature is very scarce with very variable follow up duration and different endpoints
- Cross femoral venous bypasses (433 patients in largest 10 series)
 - Clinical improvement 63-89%
 - Patency 70-85%
- Femoro/ilio-caval bypasses
 - Clinical improvement 67-100%
 - 1-3 year patency 54-100%

Hybrid Repair

- Iliac vein occlusion with significant femoral vein disease
- Endovascular recanalization of the iliac vein and endophlebectomy of the femoral vein
- Stenting into the femoral vein

Endo-Phlebectomy

(Jalaie et al, 2016)

Upper Extremity CVO

- Quiet heterogenous group of patients
- The commonest cause is central venous catheters and pacemaker devices
- TOS can be the primary etiology, however, it is usually a contributing factor
- Most of the time is asymptomatic except
 - Intrathoracic malignant neoplasms (SVC syndrome)
 - Dialysis patients with functional access

SVC Syndrome

• Acute or chronic SVC occlusion

• 50% of the time due to intrathoracic malignancy mostly lung cancer. There is a long list of tumor etiology though.

• Indwelling catheters and pacemakers are the commonest benign causes. (1-3% of patients)

Diagnosis

- Clinically:
 - Head and neck fullness and swelling
 - SOB, orthopnea, headache dizziness, cough
 - Dilated neck veins, prominent chest wall veins
 - Manifestations are accentuated in ESRD patients with functional UE access
- Investigations
 - CXR
 - Venous duplex
 - CT venogram, MRV
 - Venography (the gold standard

SVC Occlusion

Treatment

- Initial Treatment:
 - Head elevation
 - Diuretics
 - Heparin (in cases of acute exacerbation with DVT)
- Irradiation:
 - In patients with malignant disease
 - Usually effective in relieving symptoms (80% of cases)
 - Usually takes time (mean of 4 weeks)

Endovascular Therapy

- First line treatment in benign disease and in malignant cases until radiotherapy effect shows up
- Thrombolysis/thrombectomy is attempted in patients who have acute DVT component that may have precipitated symptoms
- Crossing the obstruction and management follows the same principles of ilio-caval obstruction.

Endovascular Therapy

- Angioplasty alone is usually not successful or short lived.
- Stenting is the usual therapy needed
 - BMS vs Covered stents
 - Self expanding vs balloon expanding stents
 - Unilateral, kissing stents, isolated SVC stents
- Beware of the lower half of the SVC (pericardial tamponade)

Balloon Angioplasty

SVC Kissing Stenting

Open Surgical Management

- In patients with failed endovascular therapy who are good surgical risk and have a long life expectancy
- Requires median sternotomy and bypass to the right atrial appendage
- The conduit is preferably autologous vein (GSV/FV, Spiral or Panel configuration)
- Externally supported ePTFE is the preferred prosthetic

Outcomes

- Endovenous treatment
 - Over 90% success rate in controlling symptoms
 - 1ry patency at 3 years of 44%
 - Secondary patency at 3 years of 96%.
 - Usually requires multiple interventions
 - Very low complication rate. Pericardial tamponade being the most feared one, albeit very infrequent.

Outcomes

- Open Surgical Therapy:
 - Excellent for controlling symptoms
 - 88% patency with 10 year follow up
 - Better with vein conduits with more occlusions in prosthetic conduits
 - Creation of AVF in the arm may help patency of prosthetic conduits
 - Long term anticoagulation is recommended

Unilateral CVO

- Usually asymptomatic
- May be related to TOS !!
- The symptomatic ones are usually ESRD patients with AV access
 - Malfunctioning AV access
 - Inability to create functional AV access
 - Upper extremity symptomatic venous hypertension

SCV Stenosis/ Pacemaker

Management

- Endovascular therapy is first line treatment
 - Balloon angioplasty alone can be attempted (12-14 mm).
 - Stenting for failed angioplasty or rapid recurrence
 - Self expanding stenting (for flexibility)
 - Covered stents have better patency at the expense of covering collaterals.
 - Avoid stenting at the costo-clavicular triangle (TOS Pathology)
 - Results are much more inferior than cases of ilio-caval endovascular interventions

Balloon Angioplasty

Balloon Angioplasty

H.DAVI

Central Venous Occlusion

After Central Venous Stenting

Covered Stent For Central Venous Stenosis

Failed Endovascular Therapy

- Ligation of the access and using the other UE.
- Jugular Turndown or Jugular bypass
- HeRo Device (Hemo-access Reliable Outflow Vascular Access Device)
- Inside Out HeRo technique.
- Brachial to Atrial bypass

Jugular Turndown

HeRO[™] Vascular Access Device

- Cases of central venous obstruction with failed endovascular therapy or rapid recurrence
- Needs central access into the right atrium

HeRO[™] Vascular Access Device

- Essentially a large catheter placed through the central vein (usually IJV) into the right atrium and then tunneled and connected to a graft attached to the brachial artery
- Essentially internal central bypass

HEROTM

Inside Out Technique

Brachial to Atrial Bypass

Summary

- Central venous obstruction is a heterogenous group of diseases and pathology.
- Ilio-caval obstruction is distinct from UE CVO.
- Management is tailored to the symptoms, pathology and available expertise
- Endovascular first management is feasible and usually successful at a low morbidity and mortality
- Open surgical intervention is more complex but longer lasting

Thank You

