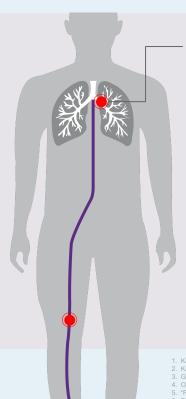
Pulmonary Embolism Debate All Sub-Massive Pulmonary Embolism Should Be Treated with Medical Therapy ONLY

David Dexter, MD
Assistant Professor of Surgery
Eastern Virginia Medical School
Medical Director Vein Center of Virginia
Sentara Vascular Specialists
29 April 2022

Disclosures

Financial Relationship with:

Inari


Penumbra

Boston Scientific

Local Primary Investigator for 4 trials in Pulmonary Embolism

Understanding the Clinical Question

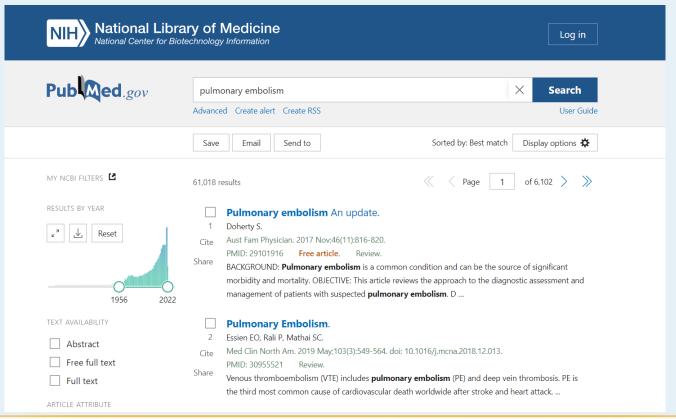
PULMONARY EMBOLISM (PE)

Most serious complication of DVT, when part of the clot travels to the lungs, causing a blockage. This is potentially life threatening.

3rd

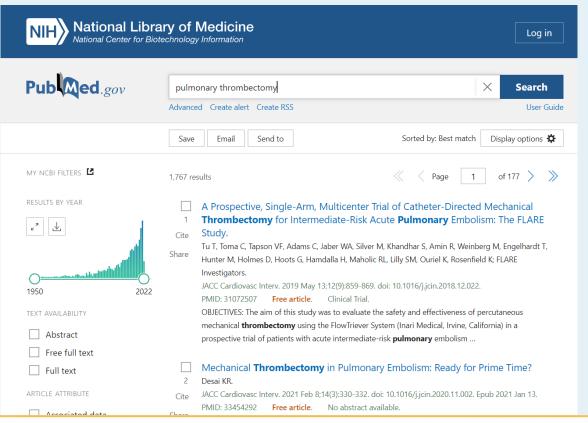
leading cause of cardiovascular death⁵ (and a leading cause of preventable deaths in hospital)

30-day all-cause **mortality**^{6,7} (**28%** for high-risk PE⁶)

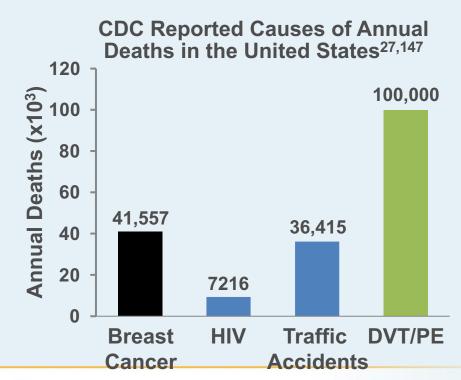

Up to 50% have residual vascular obstruction⁸⁻¹⁰, and long-term complications are common¹¹

- Kahn, et al. Arch Intern Med. 2004;164:17-26
- Galanaud, et al. Thromb Haemost 2018; 118(02); 320-328.
- 4. Office of the Surgeon General (US): National Heart, Lung, and Blood Institute (US). Office of the Surgeon General (US): 2008.

918 F;167 121-T6 A R A®


Framing the Argument

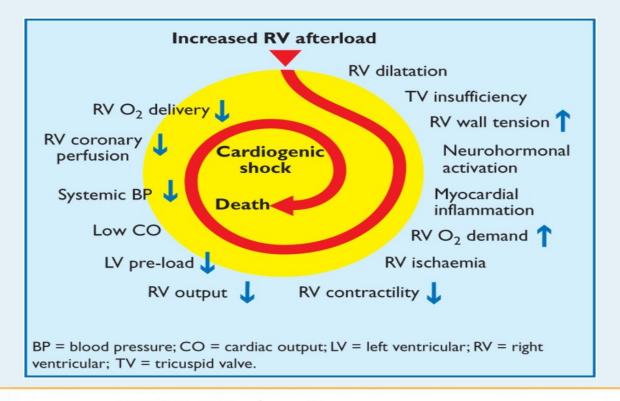
Framing the Argument


VTE Is a Major Cause of Morbidity and Mortality With a Significant Economic Burden in the United States

VTE kills more people each year than breast cancer, HIV, and traffic accidents...combined^{27,147}

Up to 900,000 people are affected by DVT/PE annually⁷¹

≈550,000 hospitalizations annually in the United States for DVT and/or PE²⁸


Healthcare costs associated with DVT/PE in 2011 were estimated to be up to \$10 billion²⁶

WHY PE PATIENTS ARE AT RISK: KEY FACTORS CONTRIBUTING TO HEMODYNAMIC COLLAPSE IN ACUTE PE

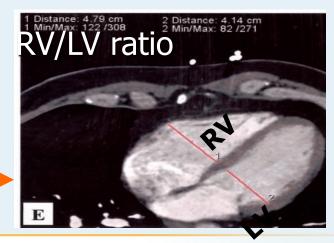
PE Patient Risk Stratification

Minor PE

- 55% PE population
- Good prognosis
- Low mortality rate

i.e

Jaff et al. Circulation 2011;123(16):1788-1830. Goldhaber et al. Lancet. 1999;353(9162):1386-9. Quiroz et al. Circulation (2004);109;2401-2404 Frémont, Chest 2008; 133;558-362 Schoef, Circ 2004; 110:3276-3280


Kucher, Arch Intern Med 2005; 165:1777-1781

Submassive PE

- 40% PE population
- Systemic normotension
- RV dysfunction
- 22% mortality @ 3 mo

Massive PE

- 5% PE population
- Sustained hypotension
- Inotropic support
- •58% mortality @ 3 mo

PE PATIENT POPULATION PROFILE

Massive PE
[High risk]
5% PE population
58%¹ mortality @ 3 months
Immediate Management Decision
Anticoagulation

Consider Open Embolectomy vs. Systemic TPA vs. ECMO

Therapy

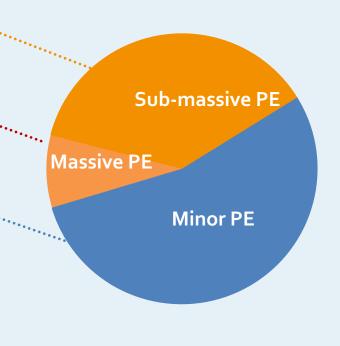
In High Risk Cases with Institutional Expertise can consider Catheter Directed

^{1.} Goldhaber SZ et al. Acute pulmonary embolism: clinical outcomes in the international Cooperative Pulmonary Embolism (ICOPEA). LRcet4999;353:1386-1389 2. Meyer G et al. Fibrinolysis for Patients with Intermediate Risk Pulmonary Embolism: New Engl J Med 2014; 370: 1402-11

^{3.} Casazza E et al. Clinical features and short term outcomes of natients with acute nulmonary embolism. The Italian Pulmonary Embolism Registry (IPER). Thrombosis Research 2012: 130:847-852

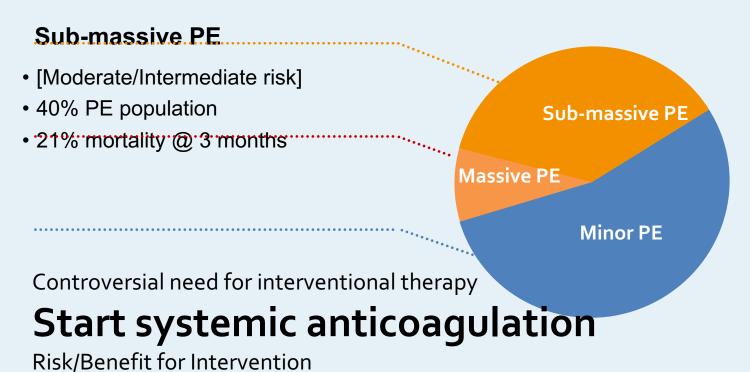
IV THROMBOLYSIS WITH TPA

- 100 mg tPA infused over two hours
- Indicated for management of acute massive PE in adults
 - For the lysis of acute pulmonary emboli, defined as obstruction of blood flow to a lobe or multiple segments of the lungs
- For the lysis of pulmonary emboli accompanied by unstable hemodynamics, e.g., failure to maintain blood pressure without supportive measures



PE PATIENT POPULATION PROFILE

Minor PE


- [Low risk]
- 55% PE population
- Good prognosis
- Low mortality rate
 Anticoagulation
 Consider for outpatient therapy
 Intervention only if patient decompensates

PE PATIENT POPULATION PROFILE

The PESI and Simplified PESI Are Validated Tools to Identify Low-Risk Patients

20

	Sco	ore
Variable	PESI	sPESI
Age >80 years	Age in years	1
Male sex	10	0
History of cancer	30	1
History of heart failure	10	
History of chronic lung disease	10	1*
Pulse ≥110 bpm	20	1
Systolic BP <100 mm Hg	30	1
Respiratory rate ≥30 breaths/min	20	0
Temperature <36°C	20	0
Altered mental status†	60	0
0 0 .000/+	00	4

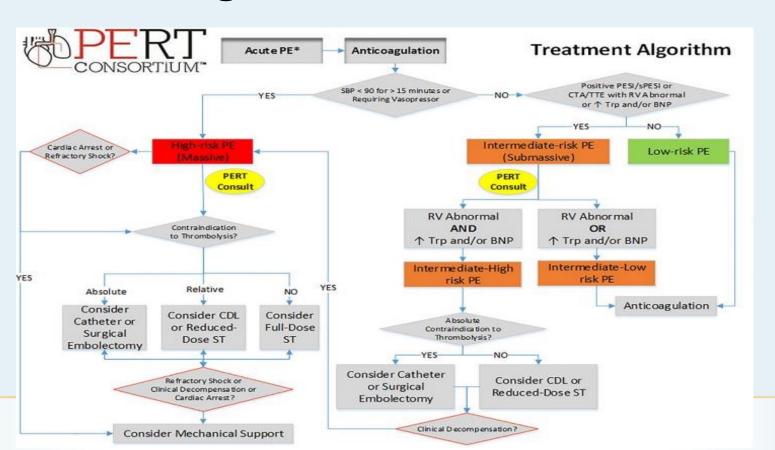
SaO₂ < 90%[‡]

*Heart failure or history of chronic lung disease combined into a single category of chronic cardiopulmonary disease. †Disorientation, lethargy, stupor, or coma. ‡With or without the administration of supplemental oxygen.

	Classif	ication by	Total Score
	PE	ESI	sPESI
	Class I	≤65	
	Class II	66-85	Low risk=0
	Class III	86-105	
	Class IV	106-125	High risk≥1
A	Class V	>125	

BOVA Score

TABLE 2


Bova scoring system for estimating 30-day risk of complications or death in acute pulmonary embolism

Predictor variable	Points
Systolic blood pressure 90–100 mm Hg	2
Elevated cardiac troponin	2
Right ventricular dysfunction on echocardiography or computed tomography	2
Heart rate ≥ 110/min	1

Points ^a	Stage	30-day risk of complications ^a	30-day risk of death
0–2	1	4.4%	3.1%
3–4	II	18%	6.8%
> 4	III	42%	10%

^aThe Bova score predicts the 30-day risk of complications and death in hemodynamically stable patients. Complications include hemodynamic collapse and recurrent nonfatal pulmonary embolism.

Treatment Algorithm

META-ANALYSIS SUGGESTS REDUCED RISK OF RECURRENTPE OR DEATH FROM THROMBOLYSIS COMPARED WITH HEPARIN

- Meta analysis of randomized clinical trials for PE comparing thrombolytic therapy with heparin
- Total of 11 trials, 748 patients included
- Data from trials that included massive PE

	Trials that included patients with major PE					
Outcome	Thrombolysis n/N(%)	Heparin n/N(%)	OR (95% CI)			
Recurrent PE or death	12/128 (9.4)	24/126 (19.0)	0.45 (0.22–0.92)			
Recurrent PE	5/128 (3.9)	9/126 (7.1)	0.61 (0.23–1.62)			
Death	8/128 (6.2)	16/126 (12.7)	0.47 (0.20–1.10)			
Major bleeding	28/128 (21.9)	15/126 (11.9)	1.98 (1.00–3.92)			
PE Indicated Pulmonary embolism						

Thrombolysis Compared With Heparin for the Initial Treatment of Pulmonary Embolism

A Meta-Analysis of the Randomized Controlled Trials

Susan Wan; Daniel J. Quinlan, MBBS; Giancarlo Agnelli, MD; John W. Eikelboom, MBBS

Sackground—Randomized trials and meta-analyses have reached conflicting conclusions about the role of thrombolytic therapy for the treatment of acute pulmonary embolism.

Method: and Renulm—We performed a meta-analysis of all randomized trials comparing thrombodytic therapy with heparis in patients with acute patients evaluate patients with acute patients evaluated. Evaluate the patients in patients with acute patients evaluated with a nonsignificant reduction in recurrent patients are problem of 67.7% versus 6.1%; OR 1.42, 95% CI 0.81 to 2.40; and a significant increase in nonsignificant remains 9.6%; OR 0.76, 95% CI 0.35 to 4.54 mather needed to harm—8). Thrombody to therapy comparison of the design of the patients of

Conclusions—Currently available data provide no evidence for a benefit of thrombolytic therapy compared with heparin for the initial treatment of unselected patients with acute pulmonary embolism. A benefit is suggested in those at highest risk of recurrence or death. The number of patients enrolled in randomized trials to date is modest, and further evaluation of the efficacy and safety of thrombolytic therapy for the treatment of high-risk patients with acute pulmonary embolism appears warranted. (Circadaion. 2004;110:744–749.)

Key Words: embolism ■ meta-analysis ■ thrombolysis ■ heparin

P almonary embolism remains a major cause of morbidity and mortality in the general consuminy, with an estimated incidence of 0.5 per 1000 people; and a case-family rate of 15% at 3 months: Mortality is even higher for patients with "major" pulmonary embolism, registery data indicate in-hospital mortality of up to 30% in gatients with acute pulmonary embolism when the modynamically unstable at

These recently published meta-analyses 11-13 and 1 large randomized usial 1 have prompted further debate about the carnot meta-analyses 11-13 and 11-13 and

Wan S et al. Thrombolysis compared with heparin for the initial treatment of pulmonary embolism. Circulation. 2004 Aug. 10;110(6):744-9.

Lysis in submassive PE

	Throm	oolytics	Anticoa	gulants			
Source	# of Events	# of Patients	# of Events	# of Patients	OR (95% CI)	Favors Thrombolytics Favors Anticoagulants	Weight, %
Goldhaber et al, ² 1993	0	46	2	55	0.16 (0.01-2.57)		5.3
Konstantinides et al, ³ 2002	4	118	3	138	1.58 (0.35-7.09)		18.4
TIPES, ²⁹ 2010	0	28	1	30	0.14 (0.00-7.31)		2.7
Fasullo et al, ¹¹ 2011	0	37	6	35	0.11 (0.02-0.58)		15.1
MOPETT, ¹⁰ 2012	1	61	3	60	0.35 (0.05-2.57)		10.5
ULTIMA,30 2013	0	30	1	29	0.13 (0.00-6.59)		2.7
TOPCOAT,9 2014	1	40	1	43	1.08 (0.07-17.53)	——————	5.3
PEITHO,8 2014	6	506	9	499	.66 (0.24-1.82)		40.0
Total	12	866	26	889	.48 (0.25-0.92)		100.0

Heterogeneity: $\chi_{7}^{2} = 7.63$; P = .37; $I^{2} = 8\%$

Overall effect: z = 2.22; P = .03

0.01	0.1	1.0	10	10
	(OR (95% C	1)	

Intermediate-risk PE

All-cause mortality (8)	12/866 (1.39)	26/889 (2.92)	NNT=65	.03
Major bleeding (8) ^a	67/866 (7.74)	20/889 (2.25)	NNH=18	<.001

Chatterjee S et al. Thrombolysis for Pulmonary Embolism and Risk of All-Cause Mortality, Major Bleeding, and Intracranial Hemorrhage: a Meta-analysis. JAMA 2014; 311(23):2414-2421.

PE Evidence for Thrombectomy

1

Completed Trials in Mechanical PE

FLARE (IDE) study

106 pts. | 18 Sites | 30-day f/u

FLASH registry

Up to 1,000 pts. | Up to 100 Sites | 6-mo. f/u

Extract PE

119 pts. | 22 sites | 6-month f/u

FLAME study (PE)

200 HR pts. | In hosp. F/u

1

Completed Trials in Catheter Directed Thrombolysis

Seattle II

Sunset PE

Knockout PE.

Optilyse PE

2

Ongoing Trials or Planned Thrombectomy Trials

PEERLESS trial vs. Lytics

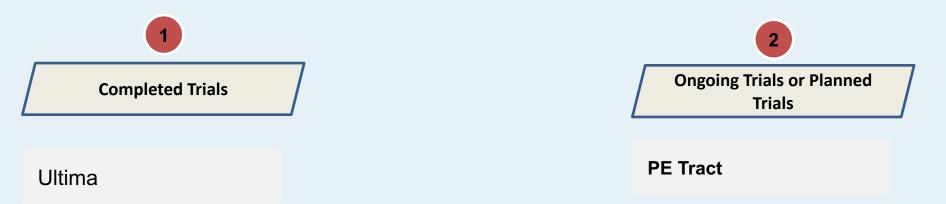
550 patients | | Up to 60 Sites | 30-day f/u

Strike PE

FLAME study (PE)

200 HR pts. | In hosp. F/u

Wolf PE


Angiovac PE

JETI PE

Trials Comparing CDT to Anticoagulation

PEITHO Trial Systemic Thrombolysis for SUBMASSIVE PE

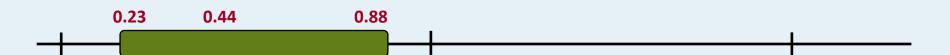
1005 Patients

Prospective randomized

Acute PE: normotensive with evidence of Right

Heart Strain

Treatment within 2 weeks

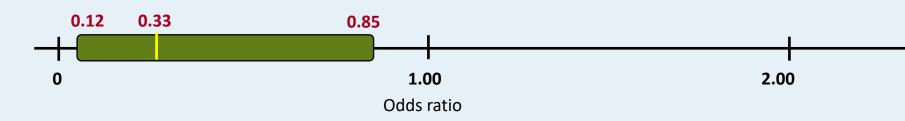

Tenectaplase IV Bolus vs. IV Heparin

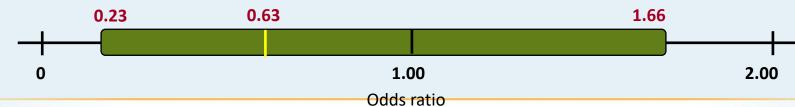
PEITHO Trial

	Tenecteplase (n=506)		Plac (n=	<i>P</i> value	
	n	(%)	n	(%)	
All-cause mortality or hemodynamic collapse within 7 days of randomization	13	(2.6)	28	(5.6)	0.015

Thrombolysis superior

PEITHO Trial


		teplase 506)	Placebo (n=499)		<i>P</i> value
	n	(%)	n	(%)	
Non-intracranial major bleeding	32	(6.3)	6	(1.5)	<0.001
Severe	16		2		
Moderate	16		4		
ISTH major bleeding	58	(11.5)	12	(2.4)	<0.001
Type of bleeding					
Fatal	1		0		
Intracranial/hemorrhagic stroke	10		1		
Extracranial major	4		1		
Hemoglobin drop <u>></u> 2g/dL	46		11		
Transfusion of <u>></u> 2 units	10		0		
Minor bleeding	165	(32.6)	43	(8.6)	<0.001



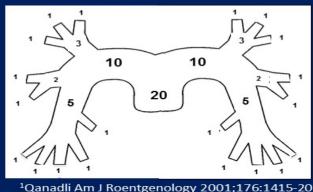
Outcomes by Age

Age ≤ 75 years

Conclusions

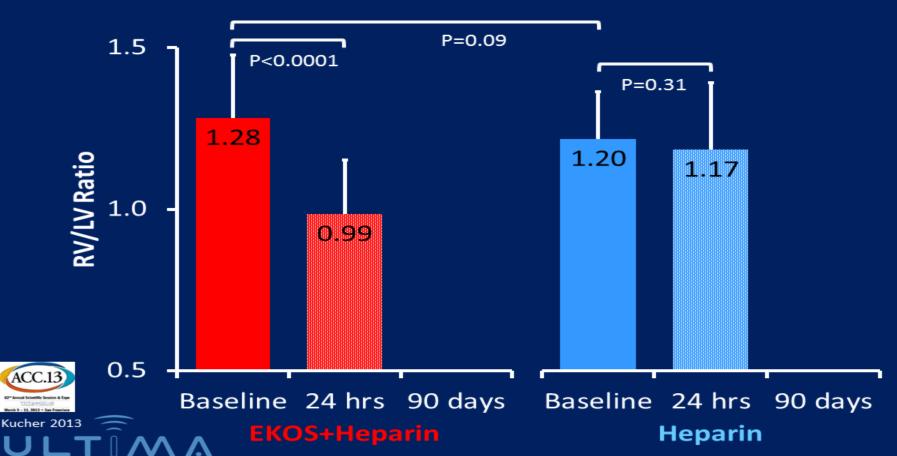
- Systemic Thrombolytics reduce the change of death or hemodynamic collapse
- This benefit comes at the cost of increased major bleeding
- Patient age and comorbidities need to be evaluated before dosing with thrombolytics.

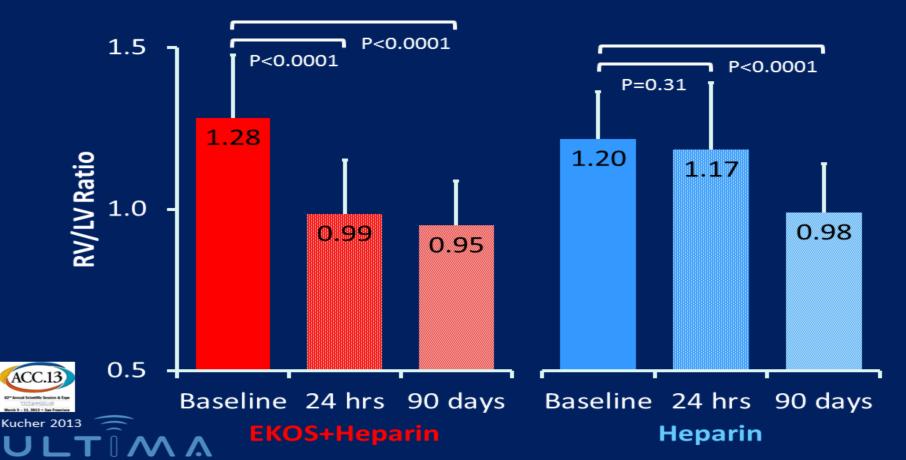
Ultima Trial


Multicenter, randomized controlled trial
Ultrasound assisted catheter directed thrombolysis
Superior to heparin alone for reversing RV enlargement
Acute symptomatic PE confirmed by CT
RV/LV ration >1 on echo (normal is 0.6)

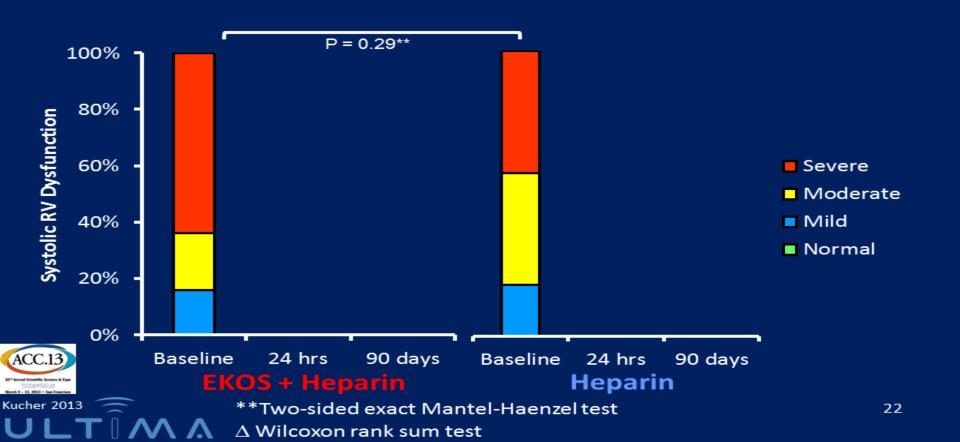
Ultima Trial

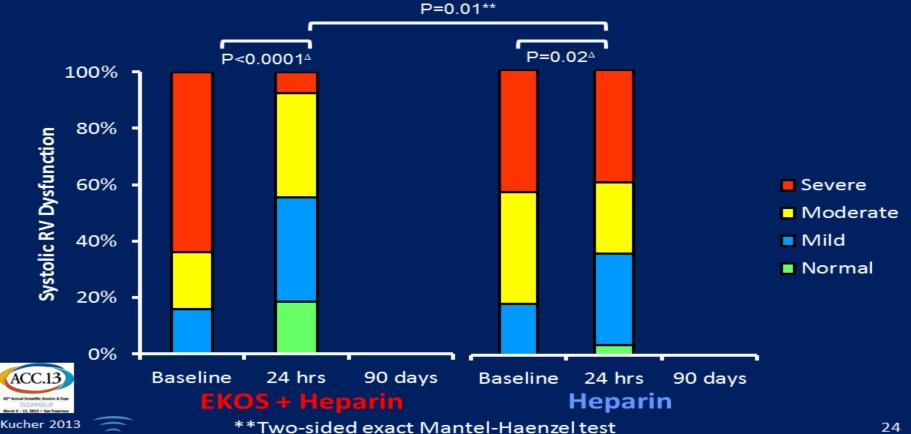
PE severity (Biomarker & CT)


	EKOS + Heparin	Heparin	
	N = 30	N = 29	p-value
Troponin test positive, n (%)	16/20 (80%)	17/22 (77%)	1.00
Pulmonary occlusion score (CT) ¹ , mean ± SD	26 ± 7	24 ± 8	0.24
Pulmonary occlusion score (CT) ¹ , median (min-max)	26 (9-36)	22 (13-38)	0.24

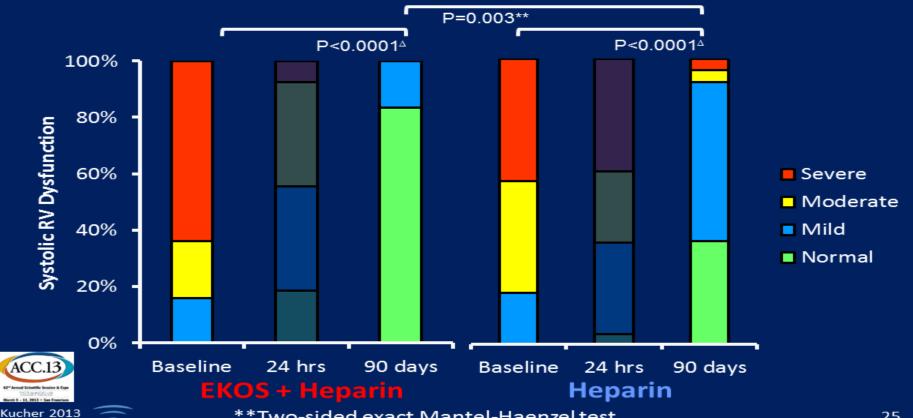

Pulmonary occlusion score¹

- Multiply score points for nonocclusive embolus by one
- Multiply score points for occlusive embolus by two
- Maximum score is 40.


RV/LV ratio (echo)


RV/LV ratio (echo)

Systolic RV dysfunction



Systolic RV dysfunction

∆ Wilcoxon rank sum test

Systolic RV dysfunction

Secondary endpoint analysis

	EKOS + Heparin		Heparin		
Clinical outcomes at 90 days	N = 30		N =	29	p-value
Death	0	0%	1*	3%	0.49
Recurrent venous thromboembolism	О	0%	0	0%	1.00
Major bleeding	0	0%	0	0%	1.00
Minor bleeding	3**	10%	1 [§]	3%	0.61

^{*} rehospitalization and death from advanced pancreatic cancer

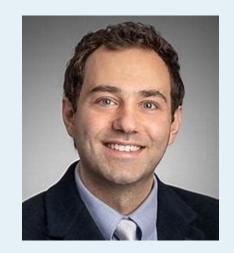
^{**} two patients with transient mild hemoptysis without medical intervention, one patient with groin hematoma requiring manual compression

§ one patient with transient anal bleeding following endoscopic removal of colon polyp

Conclusions

Catheter directed (ultrasound accelerated) thrombolysis was superior to heparin in reversing right heart dysfunction.

No increase in bleeding complications


At 90 days the right heart function is improved with CDT over Heparin

No change in mortality

What will Dr. Hariri Tell You?

Sentara Actively Performs Pulmonary Thrombectomy safely We have been doing these procedures for years

He may even show you my involvement in device trials

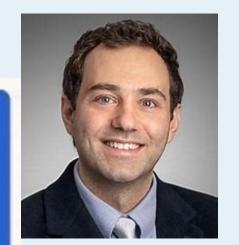
Indigo Aspiration System for Treatment of Pulmonary Embolism:

Results of the EXTRACT-PE Trial.

Sista AK, Horowitz JM, Tapson VF, Rosenberg M, Elder MD, Schiro BJ, Dohad S, Amoroso NE, Dexter DJ, Loh CT, Leung DA, Bieneman BK, Perkowski PE, Chuang ML, Benenati JF; EXTRACT-PE Investigators.

JACC Cardiovasc Interv. 2021 Feb 8;14(3):319-329. doi: 10.1016/j.jcin.2020.09.053. Epub 2021 Jan 13.

PMID: 33454291 Free article.


OBJECTIVES: This study sought to prospectively evaluate the safety and efficacy of the Indigo aspiration system in submassive acute pulmonary embolism (PE). ...Intraprocedural thrombolytic drugs were avoided in 98.3% of patients. (Evaluating the Safety and Efficacy of the ...

What will Dr. Hariri Tell You?

PE T We c Desp Having a surgeon estimate his blood loss is like having a used car salesman estimate his

Oh, you must work in a hospital too

honesty.

Original crude med-ecard humor from The Happy Hospitalist Blog

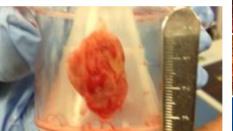
What is the argument for Catheter Directed Therapy?

Removal of clot may make patients better faster
At the expense of a major operation
Removal of clot may lead to less long term dysfunction
No evidence at any level
Removal of clot may lead to better clot clearance (less RPVO)
Limited clinical impact

Clot Porn

Indigo System

Actual Procedure Results¹



Outcomes in PE Grossly Unchanged

20 Years Ago: ICOPER 1999¹

90-day Follow-Up:

Mortality: 17.4% overall

- **52.4%** for massive
- 14.7% for sub-massive
- 45.1% of deaths ascribed to PE

Major Bleeding: 10.5%

ICH: 0.6% overall

Today: 2018 MGH PERT data²

90-day Follow-Up:

Mortality: 16.3% overall

- **41.3%** for massive
- 12.3% for intermediate-risk (sub-massive)
- 37% of deaths directly attributed to PE

Major Bleeding: 14.2%

ICH: **4.3**% in massive, **0.8**% in intermediate **2/3** of intermediate-risk deaths were post discharge

Summary

Current guidelines (Standard of Care)
Anticoagulation first and only
In decompensating patients refer to massive PE guidelines
In decompensating patients in limited centers with expertise can consider CDT
This hardly seems like a strong sell

Medical Management for Sub Massive PE should be primary therapy and this is NOT Controversial

Thank You

